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On the Temperature Dependence of the Mean 
Number of Clusters 
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The random variable number of cluster defined on the configurations of a 
ferromagnetic Ising model at zero field and inverse temperature fl on a graph 
is considered. The Gibbs average at/? = 0 is proved to be greater than the one 
at fl > 0 if the degree of N is not greater than 3. 
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1. D E S C R I P T I O N  OF T H E  R E S U L T  

Let ~ = ( V ,  L) be a finite connected graph, where V is the set of the 
vertices and L the set of the lines. We consider the ferromagnetic Gibbs 
measure g~ on { - 1, 1 } v defined by the weight 

expfi  ~ s ( i ) s ( j )  (1.1) 
{i,j}~L 

where fl ~> 0 is the inverse temperature. Given s ~ { -  1, 1 } v, the _+ clusters 
of  s are the maximal  components  of s 1( • 1) connected in L (including the 
ones of cardinality 1). 

We denote by C+-(s) the sets of  the _+ clusters of s. 
Among  the events and observables defined essentially in terms of  

clusters we consider, for instance, the event 

E ~ = { s ~ { - 1 , 1 } v l ~ c ~ C + ( s ) u C - ( s ) : { i , j } c C }  (1.2) 

and the r andom variable "number  of clusters" 

N ( s ) = l C + ( s ) l  + l C  (s)l (1.3) 
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where I-I denotes cardinality. In this paper we focus on the observable N. 
For its use in Bernoulli percolation theory we refer to refs. 3 and 4. It is 
reasonable to conjecture that the g~ probability of cluster events and the 
mean Eg~ with respect to g~ of cluster observables have a monotonic 
behavior in /3, /3 >t 0, at least for regular graphs. The setup of the F K G  
inequalities is not of help in this problem. Actually, the measures g~ are not 
F K G  ordered in /3 (ref. 5); furthermore, both N(s) and IC+(s)l are not 
monotonic functions of s. 

On the other hand, the nonlocal character of the cluster observables 
prevents us from using the Griffiths inequality/H) One of the applications 
of the conjectured monotonicity in/3 of gr ) should be the extension of 
the coexistence in the cubic lattice of the infinite + and - clusters, proved 
in ref. 1 at small/3, up to and above the critical value of/3. For the connec- 
tion with the roughening transition we refer to ref. 2. 

The aim of this paper is to show that the mean number of clusters 
exhibits a monotonicity property in/3. We prove the following result. 

P r o p o s i t i o n  1.1.  
then for any fl >/O, 

If N has in each point degree not greater than 3, 

Eg~(N) <~ Ego(N) (1.4) 

We recall that the degree of a point is the number of adjacent points. 
The most interesting graph to which Proposition 1.1 applies is the 
hexagonal one. 

The basic idea of the proof is that the ferromagnetic Gibbs measure gp 
can be represented as a Bernoulli measure conditioned to a group. This 
ideda was first used in ref. 8. The group we use here is the set of the 
cot  {0, 1} L such that any loop of L contains an even number of l's of co. 
The role of this and related groups in statistical mechanics was recognized 
in ref. 9 from a point of view in some sense complementary to the present 
one. The representation of a Gibbs measure as a Bernoulli-conditioned one 
plays a central role also in the Fortuin-Kastelyn approach to the Ising 
model (see, for instance, ref. 10), but there the group structure of the 
conditioning event was not recognized. We mention two results on the 
monotonicity of cluster events. The ratio of the mean volume to the mean 
boundary of a cluster is smaller at fl = 0 than for any /3 > 0 (ref. 6); the 
probability of percolation in a lattice gas is monotonic ini/3 and z (ref. 7) 
(the range of the parameters is completely different from the present one). 
Both these results are a straightforward application of the F K G  inequality 
and hence they are in substance quite different from the present one. 
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2. F R O M  A G I B B S  M E A S U R E  TO A 
B E R N O U L L I - C O N D I T I O N E D  ONE 

The space {0, 1} L is a g roup  with respect to the produc t  co~ .co 2 
defined by the rules (~o 1.c92)(l)=co1(l)-co2(l  ) VI~L and 1 . 0 = 0 . 1 = 1 ,  
0 . 0  = 1 �9 1 = 0. The  null configurat ion is the identity. Define 

where 

~: s~{ -1 ,1 }v - - - , ?~{O ,  1} L 

SO if s(i)=s(j) 
G ( { ' , j } ) = z  (2.1) 

1 if s(i)r 

for any { i , j }~L.  It is easy to see that  Vs, t e  { - 1 ,  1} v 

7s, = ?, Y,  (2.2) 

where st denotes the ord inary  pointwise produc t  of s and t. This implies 
that  the range of ? is a subgroup  of {0, 1 }L, which we denote F. This group 
is character ized by the condi t ion that  any loop contains an even number  
of l 's. Since the weight of any configurat ion s is p ropor t iona l  to 

exp - 2 f l l T ~ l ( 1 ) [  (2.3) 

the measure  g ,  can be represented on {0, 1 }L as a Bernoulli measure  #p of 
pa rame te r  p =  (1 + e  28) i e 2e e [0, 1/2] condi t ioned to F. With  a little 
abuse of no ta t ion  we can write 

g~ = #p(. IF)  (2.4) 

If  X is a r a n d o m  variable on { - 1, 1 } v, invariant  for the total  spin flip [i.e., 
X(s) = )2( - s ) ] ,  since 

7 , = 7 , ~ s = t  or s = - t  (2.5) 

we can define a r a n d o m  
X(s) = X(~,). We thus have 

variable on F, still denoted X, such that  

G,(  X) = E,~( XI F) (2.6) 

As the value 0 for the pa rame te r  fi corresponds  to 1 for p, so that  

Ego(X ) = E~I/2(X I F) (2.7) 

we shall achieve a compar i son  between Eg~(X) and Ego(X ) by means  of a 
compar i son  between E~(XI F) and E~I:2(XI F), where p ~ [0, 1/2]. 
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3. THE  E X P E C T A T I O N  C O N D I T I O N E D  TO A S U B G R O U P  

In this section we consider the space {0, 1 }s, where S is any finite set, 
with the group structure defined at the beginning of Section 2, and 
a Bernoulli measure #p on it, with p e [0, 1/2]. If a # ~ ,  (r ~ S ,  and 

e {0, 1} *, we denote the cylindrical subsets of {0, 1} s by 

We also include in this notation the case ~ = ~ ,  defining {0} = {0, 1} z 
and (o~)={0,1} s. If X is a random variable on {0,1} 5 and G is a 
subgroup, we define the random variable X a on the subsets of S putting 

Xc(a ) = ~ ~, X(~o) (3.2) 
~ , ~ ( ; )  

Since G is a group, G c~(~) is also a group and, in particular, it is 
nonempty. Furthermore, one has 

XG(.~)=IGI ' ~ X(~o) 
O J CG  

for 

(3.3) 

Lemma 3.1. If G is a group and p~  [0, 1/2], a sufficient condition 

is, Vo- ~ S, 

Hence 

Proof. 

E~,(Xt G) >1 E~,v2(XI G) 

XG(a) ~> X 6 ( ~ )  (3.4) 

Denoting for brevity co=c9-~(1) and ~o~ =~o ~(0), we have 

#p(CO) = pq~ - 2p + p) I~ 

= ~ (1--2p)L~ Is\~l 

From this equality, if we define, Vo-~ S, 

(3.5) 
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we get 

E~p(XI G) = ~ s v~(r (3.6) 
o - ~ S  

c is a probability measure on the subsets of S, as can be The measure Vp 
easily checked putting X =  1 in Eq. (3.6). By the definition it is also 

a has immediate that v ~/2 is the delta measure concentrated on a = G;. The Vp 
the nice property of being FKG, (8) but we do not use it here. From (3.6) 
we thus get 

E~/2( XI G) = XG( ~?J ) (3.7) 

The lemma follows from Eqs. (3.6) and (3.7). 
We remark that the hypothesis that G is a group has been only used 

in G m (~)) # ~ .  In the sequel we shall use also the following property: given 
~E {0, 1}% if Gm (~) is nonempty, it is a coset of Gm (~), and so 

If l e a ,  we denote for brevity by a\l and l, respectively, the sets a\{l} 
and {/}. 

Lernma 3.2. In order to have inequality (3.4), it is sufficient that 
Va c S, a ~ ~ ,  3l s a such that 

o r  

X(co) ~> ~ X(c~) (3.9) 
I a \ !  l {~\l l )  c~ 0 1)  ~~ Gc~ k 0 

Proof. Inequality (3.4) is implied by the following, Va c S, a r  
3l~ a: 

XG(a)~XG(~\l) (3.10) 

which, by the definition of Xa, is equivalent to 

y~ x(~o)  (3.11) 
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We apply to (3.11) the following equations: 

Z x(~) = Z x(o~) + 

with the obvious remark that 

g)--<;) 

'1) 
s x(o) 

~ a\xlO 1)I 

We thus get that inequality (3.11) is equivalent to 

(3.12) 

(3.13) 
We conclude the proof by using the above-stated property of 

If this set is empty, both members of inequality (3.13) are zero; if it is 
nonempty, it is a coset of 

and they have the same cardinality. 

4. PROOF OF PROPOSITION 1.1 

The results of the previous section, when applied to our case, can be 
summarized as follows. A sufficient condition to have 

Ega( - N )  >>. Ego( - N )  (4.1) 

is that V a c L ,  a # ~ 5 ,  ~ l e a :  

or  

- N(~o) 7> ~ - N(co) (4.2) 
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By using the characterization of F given in Section 2, we get that if 
contains a loop, say r, Vls r one has 

Therefore we can consider only those cr's that do not contain any loop, i.e., 
the connected components of ~ are trees. Let rt c ~ be the tree to which l 
belongs. We choose l to be an endline of ft. On the other hand, we can 
rewrite inequality (4.2) in the spin language: 

N(s) <~ ~ N(s) (4.3) 

where we have defined, for instance, 

[ ~ l  r ] =  {s~ { - 1 ' 1 }  v ' { i , j } e ~ r \ l ~ s ( i ) = s ( j ) ; { i , j } = l - s ( i ) ~ s ( j ) }  

and we have dropped a factor 2 from both the members. If l =  {i, j } ,  
denoting c~ = ( U b ~ b ) \ J  (i.e., e is the set of the vertices of r/ minus j), 
where j is an endpoint of rl, and denoting for brevity 

inequality (4.3) is equivalent to 

[N(s~+J+)+N(s~J )]<<. ~ [N(J+/_)+N(sSJ+)]  (4.4) 
s ~ ~ v \ (~  u j) s ~ 5~ v \ (~  u]) 

where we have defined, for instance, s~_{_ the configuration of { - 1 ,  1} v 
obtained completing ss{-1 ,1}v\ (~ '~J)  with +1 in c~ and - 1  in j. 
A sufficient condition to have inequality (4.4) is, Vs6 { -  1, 1 } v\(~;), 

~ j  N(s + + ) + N(s ~_ J_ ) <~ N(s+ j ) + N(s ~_ J+ ) (4.5) 

If c~ and 6 are connected adjacent subsets of V, we consider the inequality 

N(s+ ~ ) + N(s ~_ ~ -< + + _ ) ..~ N(s+ ~ ) N(s5  ~+ ) (4.6) 

that generalizes the previous one. Given s ~ { - 1, l } v\(~ ~ ~), we denote by 
C+(s) the set of clusters of s - ~ ( _  1) adjacent to c~ and by .N(s) the number 
of clusters of s. We have 

N(s + ~+ ) = N(s) - IC+ (s) u C2 (s)l + 1 
(4.7) 

N(s + ~ ) = N ( s ) -  IC~ (s)l + 1 - IC ; ( s . ) l  + 1 
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Using these equations and the obvious one 

IC~ (s) ~ c~- (s)l = IC~(s)l + IC2 (s)l - I C 2 ( s ) ~  G~ (s)l 

we get the following inequality equivalent to (4.6): 

IC+(s) ~ C;(s)l + ICe-(s) m C~-(s)j ~<2 (4.8) 

In the particular case 6 =  {j}, inequality (4.5) is thus equivalent to, 
Vse {-1,  1} V~'~s~, 

I C +(s)c~ Cf(s){ + ]C 2(s)  ~ C s (s)j <~2 (4.9) 

The left-hand side of inequality (4.9) is bounded, uniformly in s, by the 
number of points of V\(~ w j) that are simultaneously adjacent to e and j. 
This number is not greater than 2, since by hypothesis the degree of j is 
not greater than 3, and c~ and j have been chosen to be adjacent. Hence 
inequality (4.9) is true and this concludes the proof. 
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